Developing a surface acoustic wave-induced microfluidic cell lysis device for point-of-care DNA amplification

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Wiley

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

We developed a microchip device using surface acoustic waves (SAW) and sharp-edge glass microparticles to rapidly lyse low-level cell samples. This microchip features a 13-finger pair interdigital transducer (IDT) with a 30-degree focused angle, creating high-intensity acoustic beams converging 6 mm away at a 16 MHz frequency. Cell lysis is achieved through centrifugal forces acting on Candida albicans cells and glass particles within the focal area. To optimize this SAW-induced streaming, we conducted 42 pilot experiments, varying electrical power, droplet volume, glass particle size, concentration, and lysis time, resulting in optimal conditions: an electrical signal of 2.5 W, a 20 mu L sample volume, glass particle size below 10 mu m, concentration of 0.2 mu g, and a 5-min lysis period. We successfully amplified DNA target fragments directly from the lysate, demonstrating an efficient microchip-based cell lysis method. When combined with an isothermal amplification technique, this technology holds promise for rapid point-of-care (POC) applications.

Açıklama

Anahtar Kelimeler

cell lysis, droplet, micro-glass particle, surface acoustic wave

Kaynak

Engineering In Life Sciences

WoS Q Değeri

Q2

Scopus Q Değeri

Cilt

24

Sayı

1

Künye