Performance of neural networks and heuristic models for disease prediction from liver enzymes: Application to biochemistry device output
Yükleniyor...
Dosyalar
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Gazi Univ, Fac Engineering Architecture
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In the application of decision-making systems in the field of healthcare, with advancing technology, the outputs of direct analysis devices have become usable. As the dataset becomes richer, the accuracy of models also increases. The parameters of the dataset used in this study contain raw data closer to real conditions in terms of both quantity and quality compared to previous studies. When examining the models established to identify liver diseases, it is observed that besides the model performance, the performance of experts also affects due to the use of parameters containing expert opinions. The data set used in this study did not include subjective data other than class values, and only expert opinions were used in training the model. Thus, the model performance will be less dependent on the dataset compared to other studies. Real-life data has been worked on with different models to see which structures are better. Artificial neural networks and particle swarm optimization methods were trained to solve the classification problem and results were analyzed by testing with training and test data in the study.
Açıklama
Anahtar Kelimeler
Liver diseases, Artificial neural networks, Particle swarm optimization, Logistic regression
Kaynak
Journal of The Faculty of Engineering And Architecture of Gazi University
WoS Q Değeri
N/A
Scopus Q Değeri
Cilt
39
Sayı
4