Interpretable Machine Learning in Healthcare through Generalized Additive Model with Pairwise Interactions (GA2M): Predicting Severe Retinopathy of Prematurity
dc.authorscopusid | 57215288222 | |
dc.authorscopusid | 56814875900 | |
dc.authorscopusid | 55318646300 | |
dc.authorscopusid | 36115433400 | |
dc.authorscopusid | 55901258100 | |
dc.authorscopusid | 15026635000 | |
dc.authorscopusid | 56295278200 | |
dc.contributor.author | Karatekin, Tamer | |
dc.contributor.author | Sancak, Selim | |
dc.contributor.author | Çelik, Gökhan | |
dc.contributor.author | Topçuo?lu, Sevilay | |
dc.contributor.author | Karatekin, Güner | |
dc.contributor.author | Kirci, Pinar | |
dc.contributor.author | Okatan, Ali | |
dc.date.accessioned | 2024-09-11T19:58:57Z | |
dc.date.available | 2024-09-11T19:58:57Z | |
dc.date.issued | 2019 | |
dc.department | İstanbul Gelişim Üniversitesi | en_US |
dc.description | 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications, Deep-ML 2019 -- 26 August 2019 through 28 August 2019 -- Istanbul -- 153122 | en_US |
dc.description.abstract | We have investigated the risk factors that lead to severe retinopathy of prematurity using statistical analysis and logistic regression as a form of generalized additive model (GAM) with pairwise interaction terms (GA2M). In this process, we discuss the trade-off between accuracy and interpretability of these machine learning techniques on clinical data. We also confirm the intuition of expert neonatologists on a few risk factors, such as gender, that were previously deemed as clinically not significant in RoP prediction. © 2019 IEEE. | en_US |
dc.identifier.doi | 10.1109/Deep-ML.2019.00020 | |
dc.identifier.endpage | 66 | en_US |
dc.identifier.isbn | 978-172812914-3 | en_US |
dc.identifier.scopus | 2-s2.0-85074884539 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 61 | en_US |
dc.identifier.uri | https://doi.org/10.1109/Deep-ML.2019.00020 | |
dc.identifier.uri | https://hdl.handle.net/11363/8596 | |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | Proceedings - 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications, Deep-ML 2019 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.snmz | 20240903_G | en_US |
dc.subject | GA2M; GAM; generalized additive model; interpretability of machine learning in healthcare; logistic regression; neonatology; Retinopathy of Prematurity (RoP) | en_US |
dc.title | Interpretable Machine Learning in Healthcare through Generalized Additive Model with Pairwise Interactions (GA2M): Predicting Severe Retinopathy of Prematurity | en_US |
dc.type | Conference Object | en_US |