Analyzing the Impact of Temperature Variations on the Performance of Thermoelectric Generators

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Institute of Electrical and Electronics Engineers Inc.

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Recent advancements in renewable energy technologies have brought Thermoelectric Generators (TEGs) to the forefront, primarily due to their ability to efficiently convert waste thermal energy into electrical power across multiple power levels. This study delves into the environmental benefits and operational efficiencies of TEGs, highlighting their zero-emission, silent operation, and low maintenance requirements. A significant portion of this research is dedicated to exploring the influence of temperature differential (?T) on the efficacy of TEGs, as temperature is a crucial factor in the energy conversion process. The electrical representation of TEGs is modeled as a voltage source in series with an internal resistance, while its thermal aspect comprises parallel-connected p- and n-type thermocouples. The study aims to meticulously analyze the behavior of TEG models under various thermal gradients and to scrutinize their electrical characteristics under different load conditions. This is achieved through comprehensive experimental methodologies, with the findings underscoring the impact of temperature variations on both hot and cold sides of TEGs on all electrical parameters. It is observed that an increase in the temperature difference results in a corresponding rise in both the maximum power output and the open-circuit voltage. In essence, the efficiency of TEGs is noted to improve with a higher and more stable temperature differential. © 2023 IEEE.

Açıklama

2nd International Engineering Conference on Electrical, Energy, and Artificial Intelligence, EICEEAI 2023 -- 27 December 2023 through 28 December 2023 -- Zarqa -- 201143

Anahtar Kelimeler

Energy Conversion Efficiency; Renewable Energy; Temperature Difference; Thermoelectric Generators; Waste Heat Recovery

Kaynak

2nd International Engineering Conference on Electrical, Energy, and Artificial Intelligence, EICEEAI 2023

WoS Q Değeri

Scopus Q Değeri

N/A

Cilt

Sayı

Künye