Thermal and Kinetic Analyses of Maize Cob Combustion under Non-Isothermal and Multiple Heating Rate Thermogravimetric Conditions

dc.authorscopusid57216969435
dc.authorscopusid57387818500
dc.authorscopusid57316584100
dc.authorscopusid57387891800
dc.authorscopusid57223391597
dc.authorscopusid55756901000
dc.authorscopusid55556249900
dc.contributor.authorOtitolaiye, Victor O.
dc.contributor.authorOtitolaiye, Donald A.
dc.contributor.authorOmer, Faris
dc.contributor.authorUbana, Dodeye
dc.contributor.authorIbrahim, Ahmed O.
dc.contributor.authorDodo, Yakubu A.
dc.contributor.authorNyakuma, Bemgba B.
dc.date.accessioned2024-09-11T19:57:43Z
dc.date.available2024-09-11T19:57:43Z
dc.date.issued2021
dc.departmentİstanbul Gelişim Üniversitesien_US
dc.description.abstractThe cultivation and processing of maize (Zea mays L.) in Nigeria generates large quantities of maize cobs (MC). Current strategies for MC disposal and management are outdated, inefficient, and costly. However, the lignocellulosic nature of MC is suitable for energy recovery through biomass combustion. Studies on the critical examination of the solid-state fuel properties, thermal behaviour, degradation pathways, and temperature profile characteristics (TPCs) of MC are currently lacking in the literature. Therefore, this study seeks to comprehensively investigate the physicochemical, thermal and kinetic properties of MC as solid biofuel for combustion. The results revealed that MC contains high carbon, volatile matter, and fixed carbon along with low ash, nitrogen, and sulphur. Thermal analysis revealed that MC degradation is significantly influenced by temperature and heating rate. Furthermore, higher heating rates from 10 to 30°C/min shifted the TPCs of the TG-DTG plots to higher values. The average TPCs are onset (Tons), midpoint (Tmid), and endpoint (Tend) temperatures are; 288.21°C, 305.39°C, and 325.71°C, respectively for the TGA combustion of MC. The TGA combustion of MC resulted in ML of 94.22 -95.83% and residual mass (RM) of 4.17-5.78%. The degradation pathway for the TGA combustion of MC occurs in three major stages as evident in DTG peaks from RT - 110°C, 200°C -500°C. The kinetic analysis revealed that E and A are 125.51 kJ mol-1 and 2.65x1015 min-1. Overall, the results demonstrate that MC is a highly reactive and practical feedstock for clean energy recovery. © 2021. All Rights Reserved.en_US
dc.identifier.endpage703en_US
dc.identifier.issn1337-7027en_US
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85121875614en_US
dc.identifier.scopusqualityQ4en_US
dc.identifier.startpage694en_US
dc.identifier.urihttps://hdl.handle.net/11363/8340
dc.identifier.volume63en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSlovnaft VURUP a.sen_US
dc.relation.ispartofPetroleum and Coalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmz20240903_Gen_US
dc.subjectCombustion; Kinetic Modelling; Maize Cob; Thermal Analyses; Thermogravimetryen_US
dc.titleThermal and Kinetic Analyses of Maize Cob Combustion under Non-Isothermal and Multiple Heating Rate Thermogravimetric Conditionsen_US
dc.typeArticleen_US

Dosyalar