Using Five Machine Learning for Breast Cancer Biopsy Predictions Based on Mammographic Diagnosis

Yükleniyor...
Küçük Resim

Tarih

2017-04-20

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

İstanbul Gelişim Üniversitesi Yayınları / Istanbul Gelisim University Press

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Breast cancer is one of the causes of female death in the world. Mammography is commonly used for distinguishing malignant tumors from benign ones. In this research, a mammographic diagnostic method is presented for breast cancer biopsy outcome predictions using five machine learning which includes: Logistic Regression(LR), Linear Discriminant Analysis(LDA), Quadratic Discriminant Analysis(QDA), Random Forest(RF) and Support Vector Machine(SVM) classification. The testing results showed that SVM learning classification performs better than other with accuracy of 95.8% in diagnosing both malignant and benign breast cancer, a sensitivity of 98.4% in diagnosing disease, a specificity of 94.4%. Furthermore, an estimated area of the receiver operating characteristic (ROC) curve analysis for Support vector machine (SVM) was 99.9% for breast cancer outcome predictions, outperformed the diagnostic accuracies of Logistic Regression(LR), Linear Discriminant Analysis(LDA), Quadratic Discriminant Analysis(QDA), Random Forest(RF) methods. Therefore, Support Vector Machine (SVM) learning classification with mammography can provide highly accurate and consistent diagnoses in distinguishing malignant and benign cases for breast cancer predictions.

Açıklama

DOI: 10.19072/ijet.280563

Anahtar Kelimeler

Research Subject Categories::TECHNOLOGY

Kaynak

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye