Yazar "Uthansakul, Peerapong" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Automated Triage System for Intensive Care Admissions during the COVID-19 Pandemic Using Hybrid XGBoost-AHP Approach(MDPI, ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND, 2021) Deif, Mohanad A.; Solyman, Ahmad Amin Ahmad; Alsharif, Mohammed H.; Uthansakul, PeerapongThe sudden increase in patients with severe COVID-19 has obliged doctors to make admissions to intensive care units (ICUs) in health care practices where capacity is exceeded by the demand. To help with difficult triage decisions, we proposed an integration system Xtreme Gradient Boosting (XGBoost) classifier and Analytic Hierarchy Process (AHP) to assist health authorities in identifying patients’ priorities to be admitted into ICUs according to the findings of the biological laboratory investigation for patients with COVID-19. The Xtreme Gradient Boosting (XGBoost) classifier was used to decide whether or not they should admit patients into ICUs, before applying them to an AHP for admissions’ priority ranking for ICUs. The 38 commonly used clinical variables were considered and their contributions were determined by the Shapley’s Additive explanations (SHAP) approach. In this research, five types of classifier algorithms were compared: Support Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighborhood (KNN), Random Forest (RF), and Artificial Neural Network (ANN), to evaluate the XGBoost performance, while the AHP system compared its results with a committee formed from experienced clinicians. The proposed (XGBoost) classifier achieved a high prediction accuracy as it could discriminate between patients with COVID19 who need ICU admission and those who do not with accuracy, sensitivity, and specificity rates of 97%, 96%, and 96% respectively, while the AHP system results were close to experienced clinicians’ decisions for determining the priority of patients that need to be admitted to the ICU. Eventually, medical sectors can use the suggested framework to classify patients with COVID-19 who require ICU admission and prioritize them based on integrated AHP methodologies.Öğe Design of Biodegradable Mg Alloy for Abdominal Aortic Aneurysm Repair (AAAR) Using ANFIS Regression Model(IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 445 HOES LANE, PISCATAWAY, NJ 08855-4141, 2022) Hammam, Rania E.; Solyman, Ahmad Amin Ahmad; Alsharif, Mohammed H.; Uthansakul, Peerapong; Deif, Mohanad A.ABSTRACT Abdominal aortic aneurysm (AAA) is among the most widespread and dangerous diseases that may cause death. Recently, Endovascular Aneurysm Repair outperformed open aortic surgery, since it is a safe and reliable technique where a stent graft system is placed within the aortic aneurysm. It was aimed to design an Mg biodegradable alloy with bio-friendly alloying elements that enhance the corrosion resistance and mechanical properties of the alloy for the design of stents for Abdominal Aortic Aneurysm (AAA) repair. Adaptive Neuro-Fuzzy Inference System (ANFIS) was proposed for the design of the Mg alloy and compared to other traditional machine learning regression models (Multiple Linear Regression (MLR) and Gradient Boosting (GB). The dataset utilized in this work consisted of 600 samples of Mg alloys that were collected from the mat web database and additional papers from Google Scholar. The results revealed the superior prediction capability of the ANFIS model since it attained maximum R 2 scores of 0.926, 0.958, and 0.988 for the prediction of UTS, YS, and Ductility respectively. Furthermore, the ANFIS model was capable of designing an Mg biodegradable alloy having a UTS, YS, and Ductility of 346.148 Mpa, 230.8 Mpa, and 15.4% respectively which are excellent mechanical properties satisfying vascular stents requirements The ANFIS model can be further applied to speed up the design of other alloys in the future for various medical applications, reducing the time, cost, and effort of large searching space.Öğe Toward Optimal Cost-Energy Management Green Framework for Sustainable Future Wireless Networks(TECH SCIENCE PRESS, 871 CORONADO CENTER DR, SUTE 200, HENDERSON, NV 89052, 2021) Alsharif, Mohammed H.; Jahid, Abu; Albreem, Mahmoud A. M.; Uthansakul, Peerapong; Nebhen, Jamel; Yahya, Khalid O. Moh.The design of green cellular networking according to the traffic arrivals has the capability to reduce the overall energy consumption to a cluster in a cost-effective way. The cell zooming approach has appealed much attention that adaptively offloads the BS load demands adjusting the transmit power based on the traffic intensity and green energy availability. Besides, the researchers are focused on implementing renewable energy resources, which are considered the most attractive practices in designing energy-efficient wireless networks over the long term in a cost-efficient way in the existing infrastructure. The utilization of available solar can be adapted to acquire cost-effective and reliable power supply to the BSs, especially that sunlight is free, available everywhere, and a good alternative energy option for the remote areas. Nevertheless, planning a photovoltaic scheme necessitates viability assessment to avoid poor power supply, particularly for BSs. Therefore, cellular operators need to consider both technical and economic factors before the implementation of solar-powered BSs. This paper proposed the user-centric cell zooming policy of solar-powered cellular base stations taking into account the optimal technical criteria obtained by the HOMER software tool. The results have shown that the proposed system can provide operational expenditure (OPEX) savings of up to 47%. In addition, the efficient allocation of resource blocks (RBs) under the cell zooming technique attain remarkable energy-saving performance yielding up to 27%.