Yazar "Naushad, Alamgir" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe PASKE-IoD: Privacy-Protecting Authenticated Key Establishment for Internet of Drones(IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 445 HOES LANE, PISCATAWAY, NJ 08855-4141, 2021) Tanveer, Muhammad; Khan, Abd Ullah; Shah, Habib; Chaudhry, Shehzad Ashraf; Naushad, AlamgirUnmanned aerial vehicles/drones are considered an essential ingredient of traffic motoring systems in smart cities. Interconnected drones, also called the Internet of Drones (IoD), gather critical data from the environmental area of interest and transmit the data to a server located at the control room for further processing. This transmission occurs via wireless communication channels, which are exposed to various security risks. Besides this, an External User (EU) occasionally demands access to real-time information stored at a specific drone rather than retrieving data from the server, which requires an efficient Authenticated Session Key Establishment (ASKE) approach to ensure a reliable communication in IoD environment. In this article, we present a Privacy-Protecting ASKE scheme for IoD (PASKE-IoD). PASKE-IoD utilizes Authenticated Encryption (AE) primitive ‘‘ASCON,’’ and hash function ‘‘ASCON-hash,’’ to accomplish the ASKE phase. PASKE-IoD checks the EU’s authenticity before allowing him to access the IoD environment resources. Moreover, PASKE-IoD enables EUs and drones to communicate securely after establishing a session key. Meticulous informal security analysis and security verification are carried out using Scyther to demonstrate that PASKE-IoD is immune to numerous covert security attacks. In addition, BurrowsAbadi-Needham logic is utilized to corroborate the logical exactitude of PASKE-IoD. A comparative analysis is presented to illustrate that PASKE-IoD is efficient and renders more security features than the eminent ASKE scheme.Öğe A Robust Access Control Protocol for the Smart Grid Systems(IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 445 HOES LANE, PISCATAWAY, NJ 08855-4141, 2022) Tanveer, Muhammad; Khan, Abd Ullah; Kumar, Neeraj; Naushad, Alamgir; Chaudhry, Shehzad AshrafLightweight cryptography (LWC)-based authenticated encryption with associative data (AEAD) cryptographic primitives require fewer computational and energy resources than conventional cryptographic primitives as a single operation of an AEAD scheme provides confidentiality, integrity, and authenticity of data. This feature of AEAD schemes helps design an access control (AC) protocol to be leveraged for enhancing the security of the resource-constrained Internet of Things (IoT)- enabled smart grid (SG) system with low computational overhead and fewer cryptographic operations. This article presents a novel and robust AC protocol, called RACP-SG, which aims to enhance the security of resource-constrained IoT-enabled SG systems. RACP-SG employs an LWC-based AEAD scheme, ASCON and the hash function, ASCON-hash, along with elliptic curve cryptography to accomplish the AC phase. Besides, RACP-SG enables a smart meter (SM) and a service provider (SEP) to mutually authenticate each other and establish a session key (SK) while communicating across the public communication channel. By using the SK, the SM can securely transfer the gathered data to the SEP. We verify the security of the SK using the widely accepted random oracle model. Moreover, we conduct Scyther-based and informal security analyses to demonstrate that RACP-SG is protected against various covert security risks, such as replay, impersonation, and desynchronization attacks. Besides, we present a comparative study to illustrate that RACP-SG renders superior security features while reducing energy, storage, communication, and computational overheads compared to the state of the art.