Yazar "Hwang, Eenjun" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Artificial intelligence technology for diagnosing COVID-19 cases: a review of substantial issues(VERDUCI PUBLISHER, VIA GREGORIO VII, ROME 186-00165, ITALY, 2020) Alsharif, Mohammed H.; Alsharif, Yahia H.; Chaudhry, Shehzad Ashraf; Albreem, Mahmoud A. M.; Jahid, Abu; Hwang, EenjunToday, the world suffers from the rapid spread of COVID-19, which has claimed thousands of lives. Unfortunately, its treatment is yet to be developed. Nevertheless, this phenomenon can be decelerated by diagnosing and quarantining patients with COVID-19 at early stages, thereby saving numerous lives. In this study, the early diagnosis of this disease through artificial intelligence (AI) technology is explored. AI is a revolutionizing technology that drives new research opportunities in various fields. Although this study does not provide a final solution, it highlights the most promising lines of research on AI technology for the diagnosis of COVID-19. The major contribution of this work is a discussion on the following substantial issues of AI technology for preventing the severe effects of COVID-19: (1) rapid diagnosis and detection, (2) outbreak and prediction of virus spread, and (3) potential treatments. This study profoundly investigates these controversial research topics to achieve a precise, concrete, and concise conclusion. Thus, this study provides significant recommendations on future research directions related to COVID-19.Öğe A Hybrid Multi-Objective Optimizer-Based SVM Model for Enhancing Numerical Weather Prediction: A Study for the Seoul Metropolitan Area(MDPI, ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND, 2022) Deif, Mohanad A.; Solyman, Ahmad Amin Ahmad; Alsharif, Mohammed H.; Jung, Seungwon; Hwang, EenjunTemperature forecasting is an area of ongoing research because of its importance in all life aspects. However, because a variety of climate factors controls the temperature, it is a never-ending challenge. The numerical weather prediction (NWP) model has been frequently used to forecast air temperature. However, because of its deprived grid resolution and lack of parameterizations, it has systematic distortions. In this study, a gray wolf optimizer (GWO) and a support vector machine (SVM) are used to ensure accuracy and stability of the next day forecasting for minimum and maximum air temperatures in Seoul, South Korea, depending on local data assimilation and prediction system (LDAPS; a model of local NWP over Korea). A total of 14 LDAPS models forecast data, the daily maximum and minimum air temperatures of in situ observations, and five auxiliary data were used as input variables. The LDAPS model, the multimodal array (MME), the particle swarm optimizer with support vector machine (SVM-PSO), and the conventional SVM were selected as comparison models in this study to illustrate the advantages of the proposed model. When compared to the particle swarm optimizer and traditional SVM, the Gray Wolf Optimizer produced more accurate results, with the average RMSE value of SVM for T max and T min Forecast prediction reduced by roughly 51 percent when combined with GWO and 31 percent when combined with PSO. In addition, the hybrid model (SVM-GWO) improved the performance of the LDAPS model by lowering the RMSE values for T max Forecast and T min Forecast forecasting from 2.09 to 0.95 and 1.43 to 0.82, respectively. The results show that the proposed hybrid (GWO-SVM) models outperform benchmark models in terms of prediction accuracy and stability and that the suggested model has a lot of application potentials.