Yazar "Akhter, A. F. M. Suaib" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A Blockchain-Based Authentication Protocol for Cooperative Vehicular Ad Hoc Network(Mdpi, 2021) Akhter, A. F. M. Suaib; Ahmed, Mohiuddin; Shah, A. F. M. Shahen; Anwar, Adnan; Kayes, A. S. M.; Zengin, AhmetThe efficiency of cooperative communication protocols to increase the reliability and range of transmission for Vehicular Ad hoc Network (VANET) is proven, but identity verification and communication security are required to be ensured. Though it is difficult to maintain strong network connections between vehicles because of there high mobility, with the help of cooperative communication, it is possible to increase the communication efficiency, minimise delay, packet loss, and Packet Dropping Rate (PDR). However, cooperating with unknown or unauthorized vehicles could result in information theft, privacy leakage, vulnerable to different security attacks, etc. In this paper, a blockchain based secure and privacy preserving authentication protocol is proposed for the Internet of Vehicles (IoV). Blockchain is utilized to store and manage the authentication information in a distributed and decentralized environment and developed on the Ethereum platform that uses a digital signature algorithm to ensure confidentiality, non-repudiation, integrity, and preserving the privacy of the IoVs. For optimized communication, transmitted services are categorized into emergency and optional services. Similarly, to optimize the performance of the authentication process, IoVs are categorized as emergency and general IoVs. The proposed cooperative protocol is validated by numerical analyses which show that the protocol successfully increases the system throughput and decreases PDR and delay. On the other hand, the authentication protocol requires minimum storage as well as generates low computational overhead that is suitable for the IoVs with limited computer resources.Öğe A Secured Message Transmission Protocol for Vehicular Ad Hoc Networks(TECH SCIENCE PRESS, 871 CORONADO CENTER DR, SUTE 200, HENDERSON, NV 89052, 2021) Akhter, A. F. M. Suaib; Shah, A. F. M. Shahen; Ahmed, Mohiuddin; Moustafa, Nour; Çavuşoğlu, Ünal; Zengin, AhmetVehicular Ad hoc Networks (VANETs) become a very crucial addition in the Intelligent Transportation System (ITS). It is challenging for a VANET system to provide security services and parallelly maintain high throughput by utilizing limited resources. To overcome these challenges, we propose a blockchain-based Secured Cluster-based MAC (SCB-MAC) protocol. The nearby vehicles heading towards the same direction will form a cluster and each of the clusters has its blockchain to store and distribute the safety messages. The message which contains emergency information and requires Strict Delay Requirement (SDR) for transmission are called safety messages (SM). Cluster Members (CMs) sign SMs with their private keys while sending them to the blockchain to confirm authentication, integrity, and confidentiality of the message. A Certificate Authority (CA) is responsible for physical verification, key generation, and privacy preservation of the vehicles. We implemented a test scenario as proof of concept and tested the safety message transmission (SMT) protocol in a real-world platform. Computational and storage overhead analysis shows that the proposed protocol for SMT implements security, authentication, integrity, robustness, non-repudiation, etc. while maintaining the SDR. Messages that are less important compared to the SMs are called non-safety messages (NSM) and vehicles use RTS/CTS mechanism for NSM transmission. Numerical studies show that the proposed NSM transmission method maintains 6 times more throughput, 2 times less delay and 125% less Packet Dropping Rate (PDR) than traditional MAC protocols. These results prove that the proposed protocol outperforms the traditional MAC protocols.Öğe A Secured Privacy-Preserving Multi-Level Blockchain Framework for Cluster Based VANET(MDPI, ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND, 2021) Akhter, A. F. M. Suaib; Ahmed, Mohiuddin; Shah, A. F. M. Shahen; Anwar, Adnan; Zengin, AhmetExisting research shows that Cluster-based Medium Access Control (CB-MAC) protocols perform well in controlling and managing Vehicular Ad hoc Network (VANET), but requires ensuring improved security and privacy preserving authentication mechanism. To this end, we propose a multilevel blockchain-based privacy-preserving authentication protocol. The paper thoroughly explains the formation of the authentication centers, vehicles registration, and key generation processes. In the proposed architecture, a global authentication center (GAC) is responsible for storing all vehicle information, while Local Authentication Center (LAC) maintains a blockchain to enable quick handover between internal clusters of vehicle. We also propose a modified control packet format of IEEE 802.11 standards to remove the shortcomings of the traditional MAC protocols. Moreover, cluster formation, membership and cluster-head selection, and merging and leaving processes are implemented while considering the safety and non-safety message transmission to increase the performance. All blockchain communication is performed using high speed 5G internet while encrypted information is transmitted while using the RSA-1024 digital signature algorithm for improved security, integrity, and confidentiality. Our proof-of-concept implements the authentication schema while considering multiple virtual machines. With detailed experiments, we show that the proposed method is more efficient in terms of time and storage when compared to the existing methods. Besides, numerical analysis shows that the proposed transmission protocols outperform traditional MAC and benchmark methods in terms of throughput, delay, and packet dropping rate.